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This paper investigates the resistance to a change in wing shape due to the aerodynamic forces. In particular, the

work required by an airfoil to overcome the aerodynamic forces and produce a change in lift is examined. The

relationship between this work and the total aerodynamic energy balance is shown to have significant consequences

for transient changes in airfoil shape. Specification of the placement of the actuators and the actuator energetics is

shown to be required for the determination of the airfoil shape change, requiring minimum energy input. A general

simplified actuator model is adopted in this study, which assigns different values of actuator efficiency for negative

and positive power output. Unsteady thin airfoil theory is used to analytically determine the pressure distribution

and aerodynamic coefficients as a function of time for a ramp input of control deflection. This allows the required

power and work to overcome the aerodynamic forces to be determined for a prescribed change in the airfoil

camberline. The energy required for a pitching flat plate, conventional flap, conformal flap, and two variable camber

configurations is investigated. For the pitching flat plate, theminimum energy pitching axis is shown to be dependent

on the pitch rate and the initial angle of attack. The conformal flap is shown to require less actuator energy than the

conventional flap to overcome the aerodynamic forces for a prescribed change in lift. The energy requirements of a

variable camber configuration are shown to be sensitive to the layout of the variable camber device. The present

analysis shows that the unsteady aerodynamic influence is important only for �� values less than five. For �� values

larger than this, the present analysis reduces to the steady airfoil results of past studies.

Nomenclature

An;b = Glauert Fourier coefficients for the lift coefficients and
load distribution, n� 1; 2; . . ., and b is the same as
displayed by Ta;b

CL;n = lift coefficient, n� 0, 1, and 2 correspond to the quasi-
steady, apparent-mass, and wake-effect terms

CM;n = quarter-chord pitching moment coefficient, n represents
the terms defined with CL

CP = power coefficient for the power required to overcome
the aerodynamic forces P

CPa = power coefficient for the required power input to the
actuator

CWa
= energy coefficient for the input energy required by an

actuatorWa

c = chord length
D = drag (the barred quantity represents the time average)
E = energy dissipated to the wake per unit time (the barred

quantity represents the time average)
Ka;b = components of the lift coefficient, the subscripts are

defined for Ta;b
k = ratio of the initial lift to the change in lift
P = power required to overcome the aerodynamic forces

(the barred quantity represents the time average)

Pa = required power input to the actuator (related to P)
Qn = components of the power coefficient, n� 1; 2; . . . ; 5
q = dynamic pressure
Ta;b = components of the aerodynamic load distribution, a�

0 and 1, corresponding to the quasi-steady and
apparent-mass terms, and b� s and d, corresponding
to the components resulting from the steady and
damping boundary condition

t = time
t0 = time at which P is zero
t� = time at the end of the unsteady motion
U = freestream velocity
W = work required to overcome the aerodynamic forces
Wa = required energy input to the actuator (related toW)
w = induced velocity on the airfoil camberline
x = distance along the airfoil chord aligned with the

freestream velocity
xa = pitching axis
� = angle of attack
� = time history of the camberline shape change
�0 = quasi-steady vorticity distribution
�Cp = unsteady pressure loading
� = Dirac delta function
� = actuator coefficient
� = nondimensional time
�0 = the value of � at which P (or CP) is zero

(nondimensional equivalent to t0)
�� = nondimensional time which defines the end of the ramp

input
 = shape function of the airfoil camberline

I. Introduction

R ECENT interest inmorphing aircraft [1,2] has initiated research
concerning the characteristics of unconventional aerodynamic

control devices. These unconventional, or morphing, devices are
meant to provide an alternative to conventional hinged-flap
configurations. For the design of a morphing device, it is desired to
determine the change in wing shape that most efficiently produces
the necessary change in the aerodynamic forces. Thus, under-
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standing the process of producing a change in wing shape is of
fundamental importance for morphing aircraft. One of the main
design issues related to understanding this process is avoiding the
weight penalty for unnecessary actuator capability. For a requested
change in wing shape, the actuators on the wing must provide the
work required to deform the wing while being acted on by the
aerodynamic forces. Determining the change in wing shape that
requires the minimum actuator work allows the morphing device to
operate efficiently and with minimum actuator weight [3–8].

This paper presents a theoretical study of the relationship between
the change in camberline shape of a two-dimensional thin airfoil and
the resistance of the aerodynamic forces to this change. This
resistancewill be represented by thework required from the actuators
on the airfoil to overcome the aerodynamic forces while producing a
change in camberline shape. The relationship between the output
work produced by the actuators and the required input energy will be
discussed and shown to affect the optimal changes in wing shape. A
general actuator model will be presented and used throughout the
analysis. Although structural forces are not considered in the present
study, the application of this actuator model allows for structural
effects to be included in future studies. The energy required to
produce a change in lift for a pitching flat plate will be thoroughly
analyzed. The minimum energy pitching axes will be determined for
various cases. The analysis of the pitching flat plate is applicable to
variable twist morphing concepts. A comparison and analysis of the
actuator energy cost for a conventional flap, conformal morphing
flap, and two variable camber configurations will be presented. The
analytic nature of this study clarifies the fundamental issues involved
with the process of producing a change in airfoil shape.

II. Relationship Between the Aerodynamic Energy
Balance and Actuator Energy Cost

For a wing moving in an inviscid potential flow, energy transfer
between the wing and the fluid is achieved through the mechanical
work required to produce wing motion or deformation while
overcoming the fluid forces. This energy balance is stated
mathematically through the following equation for conservation of
energy [9]:

P�DU� E (1)

whereP is the rate ofwork done by thewing against thefluid forces in
a direction normal to the oncoming flow,D is the drag force,U is the
freestream velocity of the oncoming flow, andE is the kinetic energy
dissipated to the flow per unit time. For a thin airfoil in
incompressible potential flow, the first two of these components are
defined as follows [10]:

P�t� � �
Z
c

0

�p�x; t�
�
@zc
@t
�x; t�

�
dx (2)

D�t� � �
Z
c

0

�p�x; t�
�
@zc
@x
�x; t�

�
dx � S�t� (3)

where �p is the pressure loading on the airfoil, zc defines the
camberline shape, and S is the leading-edge suction force. Viscous
effects may be included in the energy balance [Eq. (1)] by including
the skin friction component of drag inD and viscous dissipation inE
[11].

For the oscillatory motion of a thin airfoil, Wu [12] shows that the
average value ofE over a period of oscillation is always positive.Wu
[13] later explains that this point is readily apparent, because in the
frame of reference fixed to the undisturbedfluid, the kinetic energy of
the basicflow is zero. Therefore, any unsteadymotion of a bodymust
increase the energy of the surrounding flow. It follows from Eq. (1)

that for thrust to be generated from oscillatory airfoil motion, �Pmust

be positive. The case of �P < 0 has a meaningful interpretation from
two different points of view. The first point of view is for an airfoil
being propelled through afluid.Although some energy is being taken

from the flow (by definition of �P < 0), more energy is being supplied

to propel the airfoil (because �E < 0, if �P < 0, then from Eq. (1),
�D>� �P > 0). This case may be interpreted as flutter, because the
flow is supplying energy to the structure [14]. Patil [15] points out
that flutter analyses assume a constant flight speed, which is not
practical because it implies that the aircraft propulsion system
automatically accounts for the increase in drag caused by the
unsteady wing motion. The second point of view is for a fixed airfoil
oscillating in an oncoming flow, which may be interpreted as the
power extractionmode [16,17]. The difference between this case and
the flutter case is that here, there is no energy spent on propulsion,
because the oncoming flow, such as naturally occurring wind,

provides the �DU component of energy. It should be mentioned that
the flutter mode can also be interpreted as a power extraction mode if
the structure is designed for the task. The drawback is that the power
spent on propulsion due to the oscillationswill always be greater than

the harvested power, because �E < 0.
For the transient motion or deformation of a thin airfoil, the

consequences of the aerodynamic energy balance are significantly
different from those of the oscillatory case discussed in the previous
paragraph. The oscillatory case consists of a continuous motion that
allows for amean value over a period of oscillation to be defined. For
the transient case, the unsteady motion ends at some prescribed time
t� and the aerodynamic forces continue to change. This means thatP
is zero after t�, but the unsteady drag continues to act on the airfoil
and therefore energy continues to be transferred to the wake. Notice
that in the previous paragraph, no mention was made of the mean lift
acting on the airfoil. This is because a constant aerodynamic force
does not affect the mean energy balance of an oscillating airfoil [18].
For the transient case, though, a constant aerodynamic force
component is significant. This significance is understood by
recognizing that the energy required to produce a steady lifting flow
from an initially nonlifting flow is infinite [19]. The reason for this
infinite energy is shown by Lomax [20] to be a result of the 1=t
dependence of the unsteady drag as t tends to infinity. With an initial
value of lift acting on an airfoil during a transientmotion, theflowhas
the ability to transfer some of the infinite energy present initially in
the flow to the airfoil. If the initial lift on the airfoil is zero, a result

analogous to Wu’s [12] result that �E > 0may be stated as follows: if
the fluid is undisturbed at t� 0, thenZ

t

0

E�t� dt > 0 (4)

For an airfoil with a finite value of lift at t� 0, this inequality does
not necessarily hold. Another consequence of the infinite energy
required to produce a change in lift is that it invalidates any attempt to
minimize the energy lost in the wake for a given change in lift.
Recognizing that an infinite amount of time is required for the
unsteady drag to transfer the infinite energy to the flow, it becomes
clear that the addition of a steady component of drag (e.g., viscous or
3-D induced drag) will also require an infinite amount of energy to
overcome. Adding the practical consideration that these steady
components of drag will overshadow the unsteady component of
drag for most values of time, it becomes clear that the unsteady drag
will be an insignificant component of the energy required by an
aircraft propulsion system. On the other hand, the power required to
overcome the aerodynamic forces and produce camberline
deformations P, which is finite, is not affected by the addition of
steady drag components. Therefore, the component P drives the
design of the actuation systems on an aircraft that produce
camberline deformations. The remainder of this paper will be
concerned with the determination and minimization of the energy
required to produce camberline deformations, with it being accepted
from the practical standpoint mentioned that the infinite energy
required to overcome the unsteady component of drag is being
ignored.

Figure 1 shows one way of allocating the total required actuator
power Pout for a general airfoil control device. The structural forces
would be present on any morphing-type device that must deform an
outer skin. Frictional forces may also be grouped in the structural
forces category, which would also apply to conventional hinged

1460 JOHNSTON ET AL.



flaps. The inertial forces are present for any device, but are negligible
compared with the aerodynamic and structural forces. As previously
stated, the current study is concerned with the power required to
overcome the aerodynamic forcesP, and thereforePout is assumed to
equalP in Fig. 1. For a prescribed change in camberline shape along a
defined path between t� 0 and t� t�, the total energy required to
overcome the aerodynamic forces is defined as

W �
Z
t�

0

P�t� dt (5)

The power required by the actuator to produce P is defined as Pa in
Fig. 1. The corresponding energy input to the actuators for a
prescribed camberline deformation is defined as

Wa �
Z
t�

0

Pa�t� dt (6)

Note that Eqs. (5) and (6) are defined separately for each control
surface or actuator on the airfoil. The value of P required for each
control surface or actuator is distinguished by the dzc=dt term in
Eq. (2). To obtain the quantity Pa, knowledge of the actuator
energetics and actuator placement is required. For the current study,
which is intended to investigate the fundamentals of the actuator
energy required to overcome the aerodynamic forces, a general
model of the actuator energetics is proposed. Themodel is defined as
follows:

for Pout � 0; Pa � Pout; for Pout < 0; Pa � �jPoutj
(7)

where � is a constant ranging from �1 to 1, depending on the
actuator. A separate efficiency could be defined for positive values of
Pout (so that 100% actuator efficiency is not assumed), although this
implies just multiplying Wa by a constant (because � will change
accordingly). This will not influence a comparison between different
control surface configurations and is therefore not used for this
analysis. Figure 2 illustrates Eq. (7) for three key values of �. For
�� 1, the actuator requires the same power input to produce
negative values of Pout as it does to produce positive values. Recall
that positive Pout values indicate that the actuator motion is resisted
by the external forces, whereas negative values indicate that the

external forces act in the direction of actuator motion. For �� 0, the
actuator requires no power input and allows no power to be extracted
while producing negative values of Pout. This case is the most
consistent with feedback-controlled pneumatic [21] and hydraulic
[22] actuators, which require only the controlled release of
pressurized fluid to produce negative power. The neglecting of
negative work values has also been considered for the energy-cost
analysis of insect flight [23] and human muscles [24]. The ���1
case allows the actuator to store the incoming energy associated with
negative values ofPout to be used later to produce positivePout values
with 100% conversion efficiency. This value of � allows Wa to be
negative and zero for certain cases.

Applying the general actuator model of Eqs. (6) and (7), the
equation for the total required actuator energy input can be written as

Wa �W� � �W� (8)

where W� and W� are the absolute values of the positive and
negative components of the integral in Eq. (6). An example of these
components is shown in Fig. 3, in whichW� is the integral ofP from
t� 0 to t0 andW� is the negative of the integral from t0 to t

�.

III. Aerodynamic Work for a Ramp Input
of Control Deflection

The present analysis will consider time-dependent camberlines of
the following form:

zc�x; �� �  �x����� (9)

where  defines the shape of the camberline (for example, a flapped
or a parabolic camberline), and� defines the time-varyingmagnitude
of the camberline (for example, the flap deflection angle or
magnitude of maximum camber). Also, let � represent a
nondimensional time, defined as

� �Ut
c

(10)

Note that Eq. (9) cannot represent shapes such as a time-varying flap-
to-chord ratio, because  is not a function of time. For a camberline
defined by Eq. (9), the time dependence of the camberline
deformation is defined entirely by the function �. This section will
derive the aerodynamic work and power components discussed in
Sec. II for the function � defined as a terminated ramp, which will be
written as

���� � ��0; �1 < � < 0

���� � ��0 �
�

��
� ��; 0 � � � ��

���� � ��0 �� ��; �� < � <1 (11)

where ��0 is the initial value of �, and� �� is the change in � between
� � 0 and � � ��. These terms are illustrated in Fig. 4, along with the
corresponding first and second derivatives of �. Notice that the
second derivate is defined by two Dirac delta function impulses. The
present work will consider a wide range of �� values, ranging from
less than one to infinity. The value of �� for a given case is computed

as �� �U��� _�c��1. As an example of a practical value for ��, [5]

considers a case in which _�� 90 deg =s, ��� 5 deg,

Inertial
Forces

Aerodynamic
Forces

Structural
Forces

Pout

Pi

Ps

PActuator
Pa

Fig. 1 Distribution of the provided actuator power for a general

configuration.

η = 0

η = -1

η = 1

1

Pa

Pout

Fig. 2 Relationship between Pout, the required rate of actuator work,

and Pa, the rate of actuator energy, for the proposed general actuator

model.

t* t

P

t0

-W-

W+

Fig. 3 Example of the separation ofW intoW� andW� components for

a given transient motion.
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U� 240 m=s, and c� 5 m, which result in a �� of 2.8. A significant
portion of the present study will focus on �� values that are less than
three, because the unsteady effects in this regime are large and have
not been studied previously. For larger values of ��, the unsteady
effects become small and the present analysis reduces to the steady
airfoil analyses presented by previous researchers [3–7]. These
results will be presented in this paper as the asymptote of ��

approaching infinity. Many current practical applications operate
with a �� greater than five, which fall in the steady airfoil regime. The
advantage of the present study is that the influence of increasing the
performance of these devices may be assessed, which was not
possible using previous steady airfoil analyses [3–7].

The power required to overcome the aerodynamic forces was
defined in Eq. (2). It will be convenient to represent the power by the
following nondimensional power coefficient CP:

CP��� �
P

qUc
�� 1

c2

Z
c

0

�Cp�x; ��
�
@zc
@�
�x; ��

�
dx (12)

The pressure coefficient �Cp may be modeled analytically using
unsteady thin airfoil theory, as presented by Johnston et al. [25]. This
treatment leads to quasi-steady, apparent-mass, and wake-effect
components of�Cp, which may be written using the convention of
[25] as follows:

�Cp�x; t� � �un�t���x� � 	 �A0;s��x� � T0;s�x�
��t�
� 	 �A0;d��x� � T0;d�x� � T1;s�x�
�0�t� � T1;d�x��00�t� (13)

where the first term is the wake-effect term and the rest are a
combination of the quasi-steady and apparent-mass terms. For the �
defined in Eq. (11), the wake-effect term �un evaluates to the
following:

�un��� �
� ��

2���
	K0;d	1��� � K0;s	2���
 (14)

where

	1��� � 	��� � �0:165e�0:091� � 0:335e�0:6� (15)

	2��� �
Z
�

0

	�� � 
� d
 ��2:37152� 0:55833e�0:6�

� 1:81319e�0:091� (16)

Substituting �Cp from Eq. (13) and zc from Eqs. (9) and (11) into
Eq. (12) allows the power coefficient for a single control surface to be
written as

CP �
� ��2

��2
fQ1	1��� �Q2	2��� �Q3� �Q4

� 	���� � ��� � ���
Q5g �
� �� ��0

��
Q3 (17)

where the Q terms are defined as

Q1 ��
K0;d

2�

Z
c

0

 �x� dx (18)

Q2 ��
K0;s

2�

Z
c

0

 �x� dx (19)

Q3 ��
Z
c

0

	 �A0;s��x� � T0;s�x�
 �x� dx (20)

Q4 ��
Z
c

0

	 �A0;d��x� � 2T0;d�x�
 �x� dx (21)

Q5 ��
1

2

Z
c

0

T1;d�x� �x� dx (22)

Note that the 1
2
in theQ5 equation is a result of the definition of d�=d�

at � � 0 and ��, which from Fig. 4, can be written as

d�

d�
�� � 0� � � d�

d�
�� � ��� � 1

2

� ��

��
(23)

For linear camberline shapes,  is linear, and each term in Eq. (17)
may be interpreted as a component of the dynamic hinge-moment
coefficient multiplied by the flap deflection rate (d�=d�). TheQ1 and
Q2 terms are due to the wake-effect forces, Q3 is due to the quasi-
steady forces, and Q4 and Q5 are due to the apparent-mass forces.
The Dirac delta functions in Eq. (17) are a result of the acceleration
pulse of the camberline, as shown in Fig. 4.

Having obtained an expression for the output power required by an
actuator to overcome the aerodynamic forces during a ramp input of
camberline deformation, the input energy required by the actuator
(Wa) may be calculated using Eqs. (6–8). The nondimensional input
energy coefficient is defined as

CWa
� Wa

qc2
�
Z
��

0

CPa d� (24)

where CPa is defined through the general actuator model defined in
Eq. (7), which can be written in terms of CP as

for CP � 0; CPa � CP for CP < 0; CPa � �jCPj
(25)

From Eq. (25), the integration required by Eq. (24) for CWa
can be

separated into positive CW� and negative CW� components as
follows:

CWa
� CW� � �CW� (26)

which is equivalent to Eq. (8) and is illustrated in Fig. 3. Note that the
twoDirac delta functions in Eq. (17) result in there always being both
a component of CW� and CW� present. AssumingQ5 is greater than
zero, the impulses at � � 0 and � � �� provide components of CW�
and CW�, respectively. These components can both be written as

CW;� �
� ��2

��2
Q5 (27)

which represent the instantaneous transfer of energy from the airfoil
to the surrounding fluid. Although this is an unrealistic concept, it is
accepted because it simplifies the effect of camberline acceleration
by concentrating it at the beginning and end of the unsteady motion.

The difficulty in applying Eq. (26) is that the integrations required
for CW� and CW� can only be evaluated analytically for special
cases. The reason for this is that �0 must be found and then used as a
limit of integration for the evaluation of CW� and CW� (�0 is
equivalent to t0 in Fig. 3). The analytic evaluation of �0 is made
difficult by the exponentials present in Eqs. (15) and (16). For
Eq. (26) to be evaluated analytically, � must be less than zero or
greater than �� so that CP remains either positive or negative

*τ
β∆

τ
β

d

d

0 τ*

2

2

τ
β

d

d

( ) β∆
τ

τδ
*

β∆
τ

ττδ
*

*)( −−

τ*00 τ*
τ0β

β

β∆

Fig. 4 Specified time history of the camberline deformation � and the

corresponding time-derivatives.
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throughout the deformation process. Details of these considerations
are explained most effectively through an example, which is the
focus of the next section.

IV. Application to a Pitching Flat-Plate Airfoil

The application of the actuator energy theory developed in the
previous sections for a pitching flat plate identifies many of the
interesting aspects of the theory. Consider the flat plate shown in
Fig. 5. The shape function of Eq. (9) is simply

 �x� � xa � x (28)

and the time-dependent angle of attack���� � ���� is specified to be
the ramp input defined in Eq. (11). The Q terms from Eqs. (18–22)
evaluate to the following:

Q1 � �
�
3
8
� 2xa � 2x2a

�
(29)

Q2 �Q3 � �
2
�1 � 4xa� (30)

Q4 � �
�
3
4
� 5

2
xa � 2x2a

�
(31)

Q5 � �
2

�
9
64
� 1

2
xa � 1

2
x2a

�
(32)

Applying these functions to Eq. (17) for a value of xa=c� 0:5, the
time history of CP was determined for various values of �� and is
plotted in Fig. 6. The axes of Fig. 6 are normalized with �� to allow
the various cases to be shown in the same figure. This figure shows
that the required positive workCW� decreases as �

� increases, which
is a result of reduced aerodynamic damping. Because the initial angle
of attack �0 is zero for this case, Eq. (17) indicates that the value of �
at which CP is zero (�0) is independent of �

� (this is not obvious in
Fig. 6 because of the scaling of the axes).

It turns out that this initially nonlifting case allows for the
approximate analytic evaluation of CW� and CW�. This is possible
because �0 may be determined analytically by making use of a few

valid assumptions. The solution process for �0 is initiated by setting
CP from Eq. (17) equal to zero:

Q1	1��0� �Q2	2��0� �Q3�0 �Q4 � 0 (33)

where 	1 and 	2 are defined in Eqs. (15) and (16). It is observed in
Fig. 6 that �0 is less than one, which is true for values of xa=c > 0:45.
It is also observed from Eqs. (15) and (16) that the coefficients in the
exponentials are less than one. From these observations, it is
concluded that	1 and	2maybe accurately approximated as follows,
using the first two terms of a Taylor series:

	1��0� � �0:5� 0:216�0 �O
�
�20

�
(34)

	2��0� � �0:5�0 �O
�
�20

�
(35)

Substituting these expansions into Eq. (33), �0 is found to equal

�0 �
0:5Q1 �Q4

0:216Q1 � 0:5Q2 �Q3

� . . . (36)

From Fig. 6, the limits of integration forCW� andCW� are identified,
which allows the two terms to be written as

CW� �
Z
�0

0

CP��� d�; CW� �
����
Z
��

�0

CP��� d�
���� (37)

Applying the approximations of Eqs. (34–36), the expression for
CW� from Eq. (37) simplifies to the following:

CW� �
��2

��2

�
� 1

2

�0:5Q1 �Q4�2
�0:216Q1 � 0:5Q3�

�Q5

�
(38)

where the Taylor series approximations of �1��0� and �2��0� are
used. Similarly, the approximate equation for CW� is written as

CW� � �
��2

��2

�
Q1�1���� �Q2�2���� �Q3

��2

2
�Q4�

�

�Q5 �
1

2

�0:5Q1 �Q4�2
�0:216Q1 � 0:5Q3�

�
(39)

where Eqs. (5.12) and (5.13) of [25] are used for�1���� and�2����.
These equations are valid for values of xa=c > 0:45 and for �� > 0:1.
For values of �� < 0:1, �0 is greater than �� so that the limits of
integration in Eqs. (37) are no longer valid. The usefulness of these
equations is that they accurately predict the value of xa for the
minimum CWa

for any value of � and for values of �� > 0:1. They
also indicate thatCW� has amore complex functional dependence on
�� than does CW�. Figure 7 presents the exact values of CW� and
CW�, which were obtained by computing �0 and specifying the limits
of integration for each case. The results of Eq. (38) for CW� are
shown as a dashed line for each case. It is seen that the results of
Eq. (38) are indistinguishable from the exact result for xa=c > 0:45
and become invalid as xa=c approaches 0.25. The result of Eq. (39) is
not shown in Fig. 7, although it can be shown to be accurate for the
same values of xa as Eq. (38). This figure shows that CW� and CW�
converge to the limit of �� � infinity, which represents the results of
steady airfoil theory. It also shows that as expected from steady
airfoil theory, CW� is largest for xa=c < 0:25 and CW� is largest for
xa=c > 0:25. The pitching axis for minimum CW� is found from
Eq. (38) to exactly equal 0.572, which is independent of ��. Figure 7
verifies that this minimum is located within the range of xa values in
which Eq. (38) is valid. From theCW� plot in Fig. 7, it is deduced that
as � becomes nonzero and positive, the minimum CWa

pitching axis
shifts toward the leading edge. Similarly, as � becomes negative, the
optimal axis shifts to the trailing edge.

The cases shown in Fig. 6 and discussed previously specified that
the initial �, and therefore the initial lift, was zero. The effect of an
initial lift will now be presented. From Eq. (39), it is seen that an
initial angle of attack �0 only influences CP through the last term,
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which contains Q3. Dividing this equation by ��2 allows CP to be
written as follows:

CP
��2
� 1

��2
fQ1	1��� �Q2	2��� �Q3� �Q4

� 	���� � ��� � ���
Q5g �
k

��
Q3 (40)

where

k� �0
��

(41)

The value k represents the initial lift divided by the change in steady-
state lift. Recognizing the term k in Eq. (40) is useful because it
indicates that the normalized power coefficient (CP=��

2) is
dependent only on the ratio of �0 and ��, not on each term
independently. The presence of k significantly complicates the
problem of analytically determining CW� and CW�, although the
approximate method discussed previously can be applied to certain
values of k. The main effect of the initial lift is to vertically displace
the CP curves, such as those shown in Fig. 6. This significantly
changes �0 and therefore alters the allocation of CW into CW� and
CW� components.

To gain some insight into the effect of k onCWa
, the limiting cases

of �� approaching zero and infinity will be examined. For ��

approaching zero, the region of integration for CW� is 0 � � < ��,
and the CW� component comes completely from the Dirac delta
function at ��. From Eq. (40), the integration for CWa

with ��

approaching zero results in

CWa

��2
� 1

��

�
� 1

2
Q1 �Q4

�
� �1� ��Q5

��2
�O�1� (42)

which is independent of k. For � > �1, the Q5 term is dominant.
Thus, fromEq. (32), the pitching axis forminimumCWa

is at the half-
chord. For ���1, only the bracketed term remains in Eq. (42).
Substituting Eqs. (29) and (31) into Eq. (42) and setting the
derivative with respect to xa equal to zero, the pitching axis for
minimum CWa

is found to be located at xa=c� 3=4.
For �� approaching infinity, the region of integration forCW� and

CW� depends upon k and xa. This is seen bywriting Eq. (40) in terms
of its lowest-order components for large values of ��. To determine
the lowest-order components, it is necessary to define � as

� � ���� (43)

where 0< �� < 1. Substituting this into Eq. (40), the lowest-order
equation for CP is written as follows:

CP
��2

�Q3

��
� �� � k� �O

�
ln ��

��2

	
(44)

Note that as pointed out by Lomax [20], the asymptotic limits of 	1
and 	2 obtained from Eqs. (15) and (16) are incorrect. Therefore, the
approximate Wagner function suggested by Garrick [26] was used
instead for obtaining Eq. (44). As expected, Eq. (44) represents the
steady thin airfoil theory result. Equation (44) shows that if k is less
than �1 or greater than zero, the lowest-order component of CWa

is
composed entirely of either CW� or CW�. For these values of k, CWa

is written from Eqs. (30) and (44) as follows:

F�xa; k� �
�

2

��
1

2
� k

	
�1 � 4xa�

�
�O

�
ln ��

��

	

if F � 0;
CWa

��2
� F�xa; k�

if F < 0;
CWa

��2
� �jF�xa; k�j (45)

For values of k between �1 and zero, �0 is determined by setting
Eq. (44) equal to zero. This value of �0 is then used as a limit of
integration for CWa

, which, from Eqs. (30) and (44), results in

if xa <
1

4
;

CWa

��2
��

2

�
1

2
� k� k

2

2

	
�1� 4xa�� ��k2

�
1

4
� xa

	
�O

�
ln ��

��

	

if xa �
1

4
;

CWa

��2
���k2

�
1

4
� xa

	
� ��

2

�
1

2
� k� k

2

2

	
�1� 4xa��O

�
ln ��

��

	

(46)

Table 1 presents the pitching axes for minimum CWa
obtained from

Eqs. (45) and (46), with the constraint that the axes remain within the
chord. These results are intuitive from the elementary nature of a
steady thin airfoil at an angle of attack.

The limiting cases of �� discussed earlier allowed CWa
to be

obtained analytically, which allowed the optimal pitching axes to be
determined analytically. For the k � 0 cases, the approximate
approach presented in Eqs. (36–39), accounting for the k term in
Eq. (40), is valid for a wide range of �� values.When this approach is
not valid, the integration for CWa

is performed numerically from
Eqs. (24), (25), and (40). Using a combination of analytic and
numerical approaches, the minimum CWa

pitching axes were
obtained for �� 0, 1, and �1. Figure 8 shows the variation of the
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Table 1 Minimum CWa
pitching axes as �� approaches infinity

k <�1 �1< k <�1=2 �1=2< k < 0 k > 0

�� 1 xa=c� 1=4 xa=c� 1=4 xa=c� 1=4 xa=c� 1=4
�� 0 0< xa=c < 1=4 xa=c� 1=4 xa=c� 1=4 1=4< xa=c < 1
���1 xa=c� 0 xa=c� 0 xa=c� 1 xa=c� 1
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optimal pitching axis with �� for the �� 0 case for various k values.
As determined previously, the axes are shown to approach xa=c�
0:5 as �� approaches zero. It is seen in this figure that as k becomes
large and positive, the optimal axis is located at xa=c� 0:5 for most
�� values. This is a result of CW� being composed of only the initial
impulse, which is smallest for the midchord axis. For negative k
values, the optimal axis moves toward the leading edge as ��

increases. Figure 9 shows the variation of the optimal pitching axis
with �� for the�� 1 case and various kvalues. It is interesting to note
that for this case, as was determined previously, the optimal axis at
both �� equal to zero and infinity is independent of k. This explains
the increased similarity between the optimal axes curves for various k
values in Fig. 9 when compared with Fig. 8. For airfoils that must
complete a cycle, meaning they produce a change in lift (positive k)
and then later produce a negative change in lift to return to their initial
state (negative k), the similarity in the optimal axes for negative and
positive k values is advantageous. This is because a smaller
compromise must be made, assuming the pitching axis remains
fixed, when choosing the optimal pitching axis for the complete
motion. For the majority of negative and positive combinations of k,
the optimal axis for the combination is located between the two
independent optimal points for a given ��. Thus, Figs. 8 and 9 are
very general and applicable to many practical cases. Figure 10
presents the variation of the optimal pitching axis with �� for the
���1 case. It is seen that the difference between positive and
negative k values is very large compared with Figs. 8 and 9. The
result of increasing k in Fig. 10 is seen to be a decrease in the value of
�� at which the optimal axis is the same as those shown in Table 1 for
the �� equal to infinity case. The same conclusion can be stated from
Fig. 9. A similar result was reported by Yates [27] for the minimum
energy pitching axes of an oscillating flat plate intended to produce
thrust.

V. Application to Various Control
Surface Configurations

This section describes the affect of various control surface shapes
on theCWa

required for a given change in lift. Thefirst two cases to be
considered are shown in Fig. 11, which shows a conventional hinged
flap and a conformal control surface, consisting of a quadratic
segment defined to have zero slope at xb. The magnitude of the flap
deflection � is defined in both cases as the angle at the trailing edge.
The ramp input of�, defined inEq. (11),will be used for this analysis.
From the shape functions  , which are shown for each case in
Fig. 11, the components of �CP in Eq. (13) may be determined
analytically from the equations in Sec. III. The resulting equations
are relatively complex, and it is therefore convenient to perform the
integrations required for the Q terms defined numerically in
Eqs. (18–22). Note that in the previous case of the pitching flat plate,
the �CL produced by a �� was independent of the pitching axis.
This meant that theCWa

required for a given lift could be represented
byCWa

=��2. For comparing various control surface configurations,
it is convenient to instead normalize CP and CWa

by the�C2
L. From

Eq. (39), the normalized equation for CP can then be written as

CP
�C2

L

� 1

��2K2
0;s

fQ1	1��� �Q2	2��� �Q3� �Q4

� 	���� � ��� � ���
Q5g �
k

��K0;s

Q3 (47)

where

k�
��0

� ��
� CL;initial

�CL
(48)

Recall that the quantity�CL refers to the change in steady-state lift,
which from Eq. (3.7) of [25] is written as

�CL � K0;s�
�� (49)

Considering the conventional and conformal flap configurations, if k
is greater than zero, then CP remains positive throughout the ramp
input of �. Therefore, CW� is obtained by integrating Eq. (47) from
� � 0 to �� and CW� is obtained from Eq. (27). For small negative
values of k, CP changes from positive to negative and therefore �0
must be determined. For these cases, the process described with
Eqs. (36–39) may be used. For large negative k values, CP remains
negative throughout the ramp input of �. Therefore,CW� is obtained
by integrating Eq. (47) from � � 0 to �� and CW� is obtained from
Eq. (27).

It is desired to compare the values of CWa
resulting from the

conventional and conformal flap configurations defined in Fig. 11.
The first case to be considered, shown in Fig. 12, compares the CWa

required for a given �CL, xb, and �
� while varying k. It is seen that

the CWa
required by the conformal flap is less than that required by
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the conventional flap for any kwhen �� 0. For the �� 1 case, there
is a small range of k values in which CWa

is slightly less for the
conventional flap. Overall though, the conformal flap requires less
CWa

than the conventionalflap. The reason for the smallerCWa
for the

conformal flap is that it requires less overall camberline deformation
for a given change in lift than does the conventional flap. Figure 13

illustrates this result, along with the corresponding load distribution
at � � 1=2. It is seen that the angle of deflection at the trailing edge of
the conformal flap is larger than that for the conventional flap for a
given change in lift, but the overall�zof the camberline is less for the
conformal flap. The load distribution for the conventional flap is
centered more toward the hinge line than that for the conformal flap,
which is favorable for the conventional flap. Nevertheless, the larger
�z overshadows the favorable load distribution for the conventional
flap. It should be mentioned that the shape of the load distributions
shown in Fig. 13 apply only at � � 1=2. As shown in Eq. (13), the
load distribution does not simply scale linearlywith the ramp input of
�. Figure 14 shows that CWa

varies with �� and xb for the conformal
and conventional flap. It is seen that the conformal flap requires less
CWa

for every case. It is also apparent that the benefit of the conformal
flap becomes larger as �� decreases. Hence, the conformal flap is
ideal in situations in which rapid changes in lift are required. The
values of CWa

in the limit as �� goes to infinity are shown in Fig. 14.
These values, which can be obtained from steady thin airfoil theory,
show that CWa

is 18% less for the conformal flap in the steady limit.
The considerable difference between the steady and unsteady values
in Fig. 14 indicates the importance of including the unsteady
aerodynamic terms in this analysis. It should be mentioned that the
values of CWa

for a given change in quarter-chord pitching moment
CM produce results similar to those in Fig. 14. In particular, the value
ofCWa

=C2
M decreases continuously as xb varies frommidchord to the

b

b

b

xxx

cxx

x

xx

+−=
≤≤
=

<≤

)(

,

0)(

,0

ψ

ψ

)1(21)1(2

1
)(

,

0)(

,0

2
2

−
+⎟⎟⎠

⎞
⎜⎜⎝

⎛
−

+⎟⎟⎠

⎞
⎜⎜⎝

⎛
−

=

≤≤
=

<≤

b

b

b

b

b

b

b

x

x
x

x

x
x

x
x

cxx

x

xx

ψ

ψ

a) Conventional flap

β 
U

xb

β 

U

xb

b) Conformal flap
Fig. 11 Camberline geometry for a conventional flap and conformal flap.

-3 -2 -1 0 1 2 3
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

C
W

a / 
∆ C

L2

τ * = 1 
xb / c = 0.75

k

solid lines - η = 1
dashed lines - η = 0

Conformal Flap

Conventional Flap

Fig. 12 Comparison of the CWa
required for a conformal or

conventional flap.

0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

x / c

∆ C
p / 

∆ C
L

Conformal Flap

Conventional Flap

x
b
 / c = 0.75

τ * = 1 

τ = 1/2

k = 0

0.75 0.8 0.85 0.9 0.95 1
-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

x / c

z c / 
c 

/
C

L

Conventional Flap

Conformal Flap

∆

Fig. 13 Load distribution over the flap and the corresponding shape of the flap deflections.

0 1 2 3 4 5
0

0.002

0.004

0.006

0.008

0.01

τ *

Conventional Flap

Conformal Flap

k = 0
η = 0

dashed lines - limit as τ* goes to infinity

x
b
 / c = 0.75 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.005

0.01

0.015

x
b
 / c

C
W

a / 
∆C

L
2

Conventional Flap

Conformal Flap

τ* = 1
k = 0
η = 0

Fig. 14 Effect of flap size and �� on the CWa
required for the conformal or conventional flap.

1466 JOHNSTON ET AL.



trailing edge. This is true even though the flap deflection required to
produce a pitching moment has a minimum at xb=c� 0:75 for the
conventional case.

The next cases to be considered are the variable camber
configurations shown in Fig. 15, which are defined as NACA four-
digit camberlines with time-dependent magnitudes of maximum
camber. Configuration A is defined so that the leading and trailing
edges remain on the x axis as the camber changes. ConfigurationB, is
defined so that the location of maximum camber xb remains on the x
axis as the camber changes. Because of the similar camberline
shapes, these two configurations produce the same aerodynamic
forces in steady thin airfoil theory. But the addition of the
aerodynamic damping component, due to the motion of the
camberline during shape change, makes the unsteady thin airfoil
results different between the two cases. In considering the actuator
energy for each case, it is assumed that each configuration is actuated
with a single actuator. This implies that some type of linkage system
is used to produce the desired camberline shape. Also, as was done
throughout this paper, only the aerodynamic forces are considered
for the actuator energy. It is recognized that this is a big assumption
for these variable camber configurations, but nonetheless, we feel
that the present analysis provides significant insight into the
actuation properties of a variable camber airfoil.

The dependence ofCWa
on k and xb=c is shown in Fig. 16 for both

configurations and �� 0. It is seen that configuration B requires
significantCWa

for positive k cases,whereas configurationA requires
very little for these cases. This result is explained by recognizing that
the camberlinemotion for configurationB is downward for a positive
change in lift, which must therefore move against the upward-acting
lift forces. On the other hand, the camberline motion for
configuration A is upward and is therefore not resisted by the
aerodynamic forces. For negative k values, the situation reverses and
this configuration requires significant CWa

. Figure 16 shows that
configuration B requires less CWa

for a given positive k than
configurationA requires for a negative k of the samemagnitude. This
means that if the airfoil is intended to produce an equal number of
positive changes in lift as negative changes in lift, then
configuration B is favorable from an energy standpoint. The second
plot in Fig. 16 shows that this conclusion is true for any location of
maximum camber xb. It is also seen that as xb moves closer to the
leading edge, configuration B becomes even more favorable. The
load distribution and corresponding camberline shape at � � 1

2
are

shown in Fig. 17. This figure illustrates the point made previously
that the camberline motion for configuration B is resisted by the
aerodynamic forces for k greater than or equal to zero. Note that the
difference between the load distributions shown in this figure come
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from the K0;d and �A0;d terms in Eq. (13). This figure clearly shows
why configuration B requires less CWa

(when considering the entire
range of k values) than configuration A. The first reason is that
configuration B simply requires less overall camberline deflection
than does configuration A. The second reason is that for
configuration A, the largest camberline deflections are toward the
center of the camberline, whereas for configuration B, they are at the
leading and trailing edges. Combining this fact with the shape of the
load distribution clearly shows the advantage of configuration B.

VII. Conclusions

Thework required to overcome the aerodynamic forces to produce
a change in lift through camberline deformation was shown to
depend significantly on the initial lift of the airfoil. This conclusion
arises because there is infinite energy in a lifting two-dimensional
flow. The power required for a ramp input of arbitrary camberline
deformation was shown to depend on five terms, defined as
Q1; Q2; . . . ; Q5, which depend on the results of unsteady thin airfoil
theory. The necessity of using unsteady thin airfoil theory for the
study was illustrated. The pitching axis required for a flat plate to
produce a change in lift with minimum energy input to the actuator
was shown to depend on the energy required by the actuator to
produce negative work. Assuming that there is no energy cost
associatedwith negativework, theminimumenergy pitching axis for
an airfoil with zero initial lift is located at x=c equal to 0.572 for a
ramp input. For various actuator models, the minimum energy
pitching axes were obtained and shown to depend on the rate of the
ramp input ��. A conformal flap was shown to require significantly
less energy than a conventional flap to produce a change in lift. This
conclusion was shown to be independent of the initial lift, rate of the
flap deflection, and flap size. A downward-deflecting variable
camber configuration (configuration B) was shown to require less
energy than an upward-deflecting configuration (configuration A) if
both positive and negative changes in lift are considered. Among the
control devices investigated in this paper, the conformal trailing-
edge flap requires the least energy to overcome the aerodynamic
forces for a given change in lift. The present analysis shows that the
unsteady aerodynamic influence is important only for �� values less
than five. For �� values larger than this, the present analysis reduces
to the steady airfoil results of past studies.
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