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This paper investigates the resistance to a change in wing shape due to the aerodynamic forces. In particular, the
work required by an airfoil to overcome the aerodynamic forces and produce a change in lift is examined. The
relationship between this work and the total aerodynamic energy balance is shown to have significant consequences
for transient changes in airfoil shape. Specification of the placement of the actuators and the actuator energetics is
shown to be required for the determination of the airfoil shape change, requiring minimum energy input. A general
simplified actuator model is adopted in this study, which assigns different values of actuator efficiency for negative
and positive power output. Unsteady thin airfoil theory is used to analytically determine the pressure distribution
and aerodynamic coefficients as a function of time for a ramp input of control deflection. This allows the required
power and work to overcome the aerodynamic forces to be determined for a prescribed change in the airfoil
camberline. The energy required for a pitching flat plate, conventional flap, conformal flap, and two variable camber
configurations is investigated. For the pitching flat plate, the minimum energy pitching axis is shown to be dependent
on the pitch rate and the initial angle of attack. The conformal flap is shown to require less actuator energy than the
conventional flap to overcome the aerodynamic forces for a prescribed change in lift. The energy requirements of a
variable camber configuration are shown to be sensitive to the layout of the variable camber device. The present
analysis shows that the unsteady aerodynamic influence is important only for t* values less than five. For t* values

larger than this, the present analysis reduces to the steady airfoil results of past studies.

Nomenclature

A, = Glauert Fourier coefficients for the lift coefficients and
load distribution, n = 1,2, ..., and b is the same as
displayed by T, ,,

C;, = liftcoefficient, n =0, 1, and 2 correspond to the quasi-
steady, apparent-mass, and wake-effect terms

Cy.,, = quarter-chord pitching moment coefficient, n represents
the terms defined with C;,

Cp = power coefficient for the power required to overcome
the aerodynamic forces P

Cp, = power coefficient for the required power input to the
actuator

Cy, = energy coefficient for the input energy required by an
actuator W,

c = chord length

D = drag (the barred quantity represents the time average)

E = energy dissipated to the wake per unit time (the barred
quantity represents the time average)

K,, = -components of the lift coefficient, the subscripts are
defined for T, ;,

k = ratio of the initial lift to the change in lift

P = power required to overcome the aerodynamic forces

(the barred quantity represents the time average)
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P, = required power input to the actuator (related to P)

0, = components of the power coefficient, n = 1,2,...,5
q = dynamic pressure

T,, = components of the acrodynamic load distribution, a =

0 and 1, corresponding to the quasi-steady and
apparent-mass terms, and b = s and d, corresponding
to the components resulting from the steady and
damping boundary condition

time

to = time at which P is zero

r = time at the end of the unsteady motion

U = freestream velocity

w = work required to overcome the aerodynamic forces

W, = required energy input to the actuator (related to W)

w = induced velocity on the airfoil camberline

X = distance along the airfoil chord aligned with the
freestream velocity

X4 = pitching axis

o = angle of attack

B = time history of the camberline shape change

Yo = quasi-steady vorticity distribution

AC, = unsteady pressure loading

8 = Dirac delta function

n = actuator coefficient

T = nondimensional time

7 = the value of t at which P (or Cp) is zero
(nondimensional equivalent to #;)

T+ = nondimensional time which defines the end of the ramp
input

v = shape function of the airfoil camberline

1. Introduction

ECENT interest in morphing aircraft [1,2] has initiated research

concerning the characteristics of unconventional aerodynamic
control devices. These unconventional, or morphing, devices are
meant to provide an alternative to conventional hinged-flap
configurations. For the design of a morphing device, it is desired to
determine the change in wing shape that most efficiently produces
the necessary change in the aerodynamic forces. Thus, under-
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standing the process of producing a change in wing shape is of
fundamental importance for morphing aircraft. One of the main
design issues related to understanding this process is avoiding the
weight penalty for unnecessary actuator capability. For a requested
change in wing shape, the actuators on the wing must provide the
work required to deform the wing while being acted on by the
aerodynamic forces. Determining the change in wing shape that
requires the minimum actuator work allows the morphing device to
operate efficiently and with minimum actuator weight [3-8].

This paper presents a theoretical study of the relationship between
the change in camberline shape of a two-dimensional thin airfoil and
the resistance of the aerodynamic forces to this change. This
resistance will be represented by the work required from the actuators
on the airfoil to overcome the aerodynamic forces while producing a
change in camberline shape. The relationship between the output
work produced by the actuators and the required input energy will be
discussed and shown to affect the optimal changes in wing shape. A
general actuator model will be presented and used throughout the
analysis. Although structural forces are not considered in the present
study, the application of this actuator model allows for structural
effects to be included in future studies. The energy required to
produce a change in lift for a pitching flat plate will be thoroughly
analyzed. The minimum energy pitching axes will be determined for
various cases. The analysis of the pitching flat plate is applicable to
variable twist morphing concepts. A comparison and analysis of the
actuator energy cost for a conventional flap, conformal morphing
flap, and two variable camber configurations will be presented. The
analytic nature of this study clarifies the fundamental issues involved
with the process of producing a change in airfoil shape.

II. Relationship Between the Aerodynamic Energy
Balance and Actuator Energy Cost

For a wing moving in an inviscid potential flow, energy transfer
between the wing and the fluid is achieved through the mechanical
work required to produce wing motion or deformation while
overcoming the fluid forces. This energy balance is stated
mathematically through the following equation for conservation of
energy [9]:

P+DU=E (1)

where P is the rate of work done by the wing against the fluid forces in
a direction normal to the oncoming flow, D is the drag force, U is the
freestream velocity of the oncoming flow, and E is the kinetic energy
dissipated to the flow per unit time. For a thin airfoil in
incompressible potential flow, the first two of these components are
defined as follows [10]:

P == [ (o] ] ax @
D) = — fo “Ap(e) [aaix (x. r)} dx - S() 3

where Ap is the pressure loading on the airfoil, z. defines the
camberline shape, and S is the leading-edge suction force. Viscous
effects may be included in the energy balance [Eq. (1)] by including
the skin friction component of drag in D and viscous dissipation in E
[L1].

For the oscillatory motion of a thin airfoil, Wu [12] shows that the
average value of E over a period of oscillation is always positive. Wu
[13] later explains that this point is readily apparent, because in the
frame of reference fixed to the undisturbed fluid, the kinetic energy of
the basic flow is zero. Therefore, any unsteady motion of a body must
increase the energy of the surrounding flow. It follows from Eq. (1)
that for thrust to be generated from oscillatory airfoil motion, P must
be positive. The case of P < 0 has a meaningful interpretation from
two different points of view. The first point of view is for an airfoil
being propelled through a fluid. Although some energy is being taken
from the flow (by definition of P < 0), more energy is being supplied

to propel the airfoil (because E <0, if P <0, then from Eq. (1),
D > —P > 0). This case may be interpreted as flutter, because the
flow is supplying energy to the structure [14]. Patil [15] points out
that flutter analyses assume a constant flight speed, which is not
practical because it implies that the aircraft propulsion system
automatically accounts for the increase in drag caused by the
unsteady wing motion. The second point of view is for a fixed airfoil
oscillating in an oncoming flow, which may be interpreted as the
power extraction mode [16,17]. The difference between this case and
the flutter case is that here, there is no energy spent on propulsion,
because the oncoming flow, such as naturally occurring wind,
provides the DU component of energy. It should be mentioned that
the flutter mode can also be interpreted as a power extraction mode if
the structure is designed for the task. The drawback is that the power
spent on propulsion due to the oscillations will always be greater than
the harvested power, because E < 0.

For the transient motion or deformation of a thin airfoil, the
consequences of the aerodynamic energy balance are significantly
different from those of the oscillatory case discussed in the previous
paragraph. The oscillatory case consists of a continuous motion that
allows for a mean value over a period of oscillation to be defined. For
the transient case, the unsteady motion ends at some prescribed time
* and the aerodynamic forces continue to change. This means that P
is zero after *, but the unsteady drag continues to act on the airfoil
and therefore energy continues to be transferred to the wake. Notice
that in the previous paragraph, no mention was made of the mean lift
acting on the airfoil. This is because a constant aerodynamic force
does not affect the mean energy balance of an oscillating airfoil [18].
For the transient case, though, a constant aerodynamic force
component is significant. This significance is understood by
recognizing that the energy required to produce a steady lifting flow
from an initially nonlifting flow is infinite [19]. The reason for this
infinite energy is shown by Lomax [20] to be a result of the 1/¢
dependence of the unsteady drag as ¢ tends to infinity. With an initial
value of lift acting on an airfoil during a transient motion, the flow has
the ability to transfer some of the infinite energy present initially in
the flow to the airfoil. If the initial lift on the airfoil is zero, a result
analogous to Wu’s [12] result that £ > 0 may be stated as follows: if
the fluid is undisturbed at t = 0, then

/t E()dt>0 (C))
0

For an airfoil with a finite value of lift at # = 0, this inequality does
not necessarily hold. Another consequence of the infinite energy
required to produce a change in liftis that it invalidates any attempt to
minimize the energy lost in the wake for a given change in lift.
Recognizing that an infinite amount of time is required for the
unsteady drag to transfer the infinite energy to the flow, it becomes
clear that the addition of a steady component of drag (e.g., viscous or
3-D induced drag) will also require an infinite amount of energy to
overcome. Adding the practical consideration that these steady
components of drag will overshadow the unsteady component of
drag for most values of time, it becomes clear that the unsteady drag
will be an insignificant component of the energy required by an
aircraft propulsion system. On the other hand, the power required to
overcome the aerodynamic forces and produce camberline
deformations P, which is finite, is not affected by the addition of
steady drag components. Therefore, the component P drives the
design of the actuation systems on an aircraft that produce
camberline deformations. The remainder of this paper will be
concerned with the determination and minimization of the energy
required to produce camberline deformations, with it being accepted
from the practical standpoint mentioned that the infinite energy
required to overcome the unsteady component of drag is being
ignored.

Figure 1 shows one way of allocating the total required actuator
power P, for a general airfoil control device. The structural forces
would be present on any morphing-type device that must deform an
outer skin. Frictional forces may also be grouped in the structural
forces category, which would also apply to conventional hinged
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P, Structural
Forces
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Forces

Fig. 1 Distribution of the provided actuator power for a general
configuration.

flaps. The inertial forces are present for any device, but are negligible
compared with the aerodynamic and structural forces. As previously
stated, the current study is concerned with the power required to
overcome the aerodynamic forces P, and therefore P, is assumed to
equal Pin Fig. 1. For a prescribed change in camberline shape along a
defined path between ¢ = 0 and ¢ = ¢*, the total energy required to
overcome the aerodynamic forces is defined as

W= /l* P(t)dt (5)
0

The power required by the actuator to produce P is defined as P, in
Fig. 1. The corresponding energy input to the actuators for a
prescribed camberline deformation is defined as

A ©)
0

Note that Egs. (3) and (6) are defined separately for each control
surface or actuator on the airfoil. The value of P required for each
control surface or actuator is distinguished by the dz./dt term in
Eq. (2). To obtain the quantity P,, knowledge of the actuator
energetics and actuator placement is required. For the current study,
which is intended to investigate the fundamentals of the actuator
energy required to overcome the aerodynamic forces, a general
model of the actuator energetics is proposed. The model is defined as
follows:

for Pout 2 0’ Ptl = Pout;

for P()ut < 07 Pa = n'Poull

O

where 7 is a constant ranging from —1 to 1, depending on the
actuator. A separate efficiency could be defined for positive values of
P, (so that 100% actuator efficiency is not assumed), although this
implies just multiplying W, by a constant (because n will change
accordingly). This will not influence a comparison between different
control surface configurations and is therefore not used for this
analysis. Figure 2 illustrates Eq. (7) for three key values of n. For
n =1, the actuator requires the same power input to produce
negative values of P, as it does to produce positive values. Recall
that positive P, values indicate that the actuator motion is resisted
by the external forces, whereas negative values indicate that the

AP,

n=0 1 Pou

A
A

v
Fig. 2 Relationship between P, ,, the required rate of actuator work,
and P,, the rate of actuator energy, for the proposed general actuator
model.

external forces act in the direction of actuator motion. For n = 0, the
actuator requires no power input and allows no power to be extracted
while producing negative values of P,,. This case is the most
consistent with feedback-controlled pneumatic [21] and hydraulic
[22] actuators, which require only the controlled release of
pressurized fluid to produce negative power. The neglecting of
negative work values has also been considered for the energy-cost
analysis of insect flight [23] and human muscles [24]. The n = —1
case allows the actuator to store the incoming energy associated with
negative values of P, to be used later to produce positive P, values
with 100% conversion efficiency. This value of 7 allows W, to be
negative and zero for certain cases.

Applying the general actuator model of Egs. (6) and (7), the
equation for the total required actuator energy input can be written as

W, =W, +nW_ @®)

where W, and W_ are the absolute values of the positive and
negative components of the integral in Eq. (6). An example of these
components is shown in Fig. 3, in which W is the integral of P from
t =0 to ¢ty and W_ is the negative of the integral from ¢, to ¢*.

III. Aerodynamic Work for a Ramp Input
of Control Deflection

The present analysis will consider time-dependent camberlines of
the following form:

2e(x, 1) =¥ () B () (C)]

where 1 defines the shape of the camberline (for example, a flapped
or a parabolic camberline), and 8 defines the time-varying magnitude
of the camberline (for example, the flap deflection angle or
magnitude of maximum camber). Also, let t represent a
nondimensional time, defined as

T=— (10)
c

Note that Eq. (9) cannot represent shapes such as a time-varying flap-
to-chord ratio, because ¥ is not a function of time. For a camberline
defined by Eq. (9), the time dependence of the camberline
deformation is defined entirely by the function f. This section will
derive the aerodynamic work and power components discussed in
Sec. II for the function B defined as a terminated ramp, which will be
written as

B(z) = Bo. —00<1<0
BO=hy+=0B  Ost=7
B(x) = By + AB. < T <00 (11)

where f, is the initial value of 8, and A is the change in  between
T = (0and v = 7*. These terms are illustrated in Fig. 4, along with the
corresponding first and second derivatives of . Notice that the
second derivate is defined by two Dirac delta function impulses. The
present work will consider a wide range of t* values, ranging from
less than one to infinity. The value of ¢* for a given case is computed
as T = UAB(Bc)™". As an example of a practical value for t*, [5]
considers a case in which B=090 deg/s, AB =3 deg,

Fig. 3 Example of the separation of W into W, and W_ components for
a given transient motion.
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Fig. 4 Specified time history of the camberline deformation § and the

corresponding time-derivatives.

U =240 m/s,and ¢ = 5 m, whichresultin a t* of 2.8. A significant
portion of the present study will focus on t* values that are less than
three, because the unsteady effects in this regime are large and have
not been studied previously. For larger values of 7*, the unsteady
effects become small and the present analysis reduces to the steady
airfoil analyses presented by previous researchers [3—7]. These
results will be presented in this paper as the asymptote of 7*
approaching infinity. Many current practical applications operate
with a t* greater than five, which fall in the steady airfoil regime. The
advantage of the present study is that the influence of increasing the
performance of these devices may be assessed, which was not
possible using previous steady airfoil analyses [3-7].

The power required to overcome the aerodynamic forces was
defined in Eq. (2). It will be convenient to represent the power by the
following nondimensional power coefficient Cp:

Cp(7) —————/ AC,(x, r)|: < (x, T)] dx (12)

The pressure coefficient AC, may be modeled analytically using
unsteady thin airfoil theory, as presented by Johnston et al. [25]. This
treatment leads to quasi-steady, apparent-mass, and wake-effect
components of AC,,, which may be written using the convention of
[25] as follows:

ACI,()C, t) = aun(t)x(x) + [A_OJX(‘X) + TO.S(X)]:B(O
+ [Agax(x) + Toy(x) + T, ()@ + T ()" (1) (13)
where the first term is the wake-effect term and the rest are a
combination of the quasi-steady and apparent-mass terms. For the

defined in Eq. (11), the wake-effect term «,, evaluates to the
following:

oy, (1) = ﬂ —— [Ko.a®1 (7) + Ko ,¢:(7)] (14)

where

#1(7) = ¢(r) = —0.165¢7091T — (.335¢06° (15)

(1) = / "(t — 0) do = —2.37152 + 055833067
0
+ 1.81319¢700917 (16)
Substituting AC,, from Eq. (13) and z. from Egs. (9) and (L1) into

Eq. (12) allows the power coefficient for a single control surface to be
written as

Cr =22 1060 + 00 + 011+ 0,
1300 — 8- gy + 2P0 a7
where the Q terms are defined as
5 My a as)

_ KO..Y ¢
0: =3 [ ax 19)
- L R () + To,, 9 (x) dx 20)
- /0 Woax () + 2Ty s Y () dx 1)
05 =3 [ Tuatwen ax @2)

Note that the % in the Q5 equation is a result of the definition of d8/dt
at t = 0 and t*, which from Fig. 4, can be written as

g, . _1AB
E(T_T)_Zf*

Pe=0)=- @3)
dr

For linear camberline shapes, ¥ is linear, and each term in Eq. (17)
may be interpreted as a component of the dynamic hinge-moment
coefficient multiplied by the flap deflection rate (d8/dz). The Q, and
0, terms are due to the wake-effect forces, Q5 is due to the quasi-
steady forces, and Q, and Qs are due to the apparent-mass forces.
The Dirac delta functions in Eq. (17) are a result of the acceleration
pulse of the camberline, as shown in Fig. 4.

Having obtained an expression for the output power required by an
actuator to overcome the aerodynamic forces during a ramp input of
camberline deformation, the input energy required by the actuator
(W,) may be calculated using Egs. (6—8). The nondimensional input
energy coefficient is defined as

Cy, = W“Z = Cp, dr 24)
qc 0

where Cp_ is defined through the general actuator model defined in
Eq. (7), which can be written in terms of Cp as

for Cp >0, Cp,=Cp for Cp <0, Cp, = 1|Cp|

(25)

From Eq. (25), the integration required by Eq. (24) for Cy,, can be
separated into positive Cy, and negative Cy_ components as
follows:

Cy, =Cyy +nCy_ (26)

which is equivalent to Eq. (8) and is illustrated in Fig. 3. Note that the
two Dirac delta functions in Eq. (17) result in there always being both
acomponent of Cy,, and Cy,_ present. Assuming Qs is greater than
zero, the impulses at T = 0 and t = t* provide components of Cy,
and Cy,_, respectively. These components can both be written as

A
Cus = ’32 05 @7)

which represent the instantaneous transfer of energy from the airfoil
to the surrounding fluid. Although this is an unrealistic concept, it is
accepted because it simplifies the effect of camberline acceleration
by concentrating it at the beginning and end of the unsteady motion.

The difficulty in applying Eq. (26) is that the integrations required
for Cy, and Cy_ can only be evaluated analytically for special
cases. The reason for this is that 7, must be found and then used as a
limit of integration for the evaluation of Cy, and Cy_ (1 is
equivalent to 7, in Fig. 3). The analytic evaluation of t; is made
difficult by the exponentials present in Eqs. (15) and (16). For
Eq. (26) to be evaluated analytically, T must be less than zero or
greater than t* so that Cp remains either positive or negative
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throughout the deformation process. Details of these considerations
are explained most effectively through an example, which is the
focus of the next section.

IV. Application to a Pitching Flat-Plate Airfoil

The application of the actuator energy theory developed in the
previous sections for a pitching flat plate identifies many of the
interesting aspects of the theory. Consider the flat plate shown in
Fig. 5. The shape function of Eq. (9) is simply

Y(x) =x, —x (28)

and the time-dependent angle of attack B(t) = «(7) is specified to be
the ramp input defined in Eq. (11). The Q terms from Eqs. (18-22)
evaluate to the following:

0, = n(g x4 2x,2,) (29)
0 =0y =%(1 —4x,) (30)
0y =n(3-3x, +24) G1)
05 =3(% — bx +43) (32)

Applying these functions to Eq. (17) for a value of x,/c = 0.5, the
time history of Cp was determined for various values of t* and is
plotted in Fig. 6. The axes of Fig. 6 are normalized with t* to allow
the various cases to be shown in the same figure. This figure shows
that the required positive work Cy,, decreases as T increases, which
is aresult of reduced aerodynamic damping. Because the initial angle
of attack « is zero for this case, Eq. (17) indicates that the value of t
at which Cj is zero (tp) is independent of 7* (this is not obvious in
Fig. 6 because of the scaling of the axes).

It turns out that this initially nonlifting case allows for the
approximate analytic evaluation of Cy,, and Cy,_. This is possible
because 1, may be determined analytically by making use of a few

Actuator

vy

Fig. 5 Definition of the geometry and actuator placement for a pitching
flat plate.

ol
3
g
[ 3
L)& T*=5 .
7%= infinity e
\.~
-1f e,
x,/¢=050 T
initial o= 0 N
_ l 5 L L L L ..
0 0.2 04 0.6 0.8 1
T/ T*

Fig. 6 Time history of the power coefficient for a ramp input of « for
various values of 7*.

valid assumptions. The solution process for 7 is initiated by setting
Cp from Eq. (17) equal to zero:

0191(10) + Qr5(70) + 0370 + 04, =0 (33)

where ¢, and ¢, are defined in Egs. (15) and (16). It is observed in
Fig. 6 that 7, is less than one, which is true for values of x, /¢ > 0.45.
It is also observed from Egs. (15) and (16) that the coefficients in the
exponentials are less than one. From these observations, it is
concluded that ¢, and ¢, may be accurately approximated as follows,
using the first two terms of a Taylor series:

61(10) = —0.5 + 0.2167, + o(rg) (34)

92(10) = ~0.57 + O(z3) (35)
Substituting these expansions into Eq. (33), 7, is found to equal

_ 0.50, — 04
T 0.2160, —0.50, + 0; te (36)

To

From Fig. 6, the limits of integration for Cy,, and Cy,_ are identified,
which allows the two terms to be written as
o
/ Cp(r)dr

T

Cy- = (37

Cv. = [ e
0

Applying the approximations of Egs. (34-36), the expression for
Cy, from Eq. (37) simplifies to the following:

_ Ao’ 1 (050, —0y)°
Cwe =77 [_E (0.2160Q; + 0.50;) + QS] (38)

where the Taylor series approximations of ®,(z,) and ®,(z,) are
used. Similarly, the approximate equation for Cy,_ is written as

Ac? 2
Cy_= o {Q1¢1(T*) + 0, P, (7%) + Q37+ Oyt*

2
_g+i 052-0) } 39
(0.2160; + 0.503)

where Eqs. (5.12) and (5.13) of [25] are used for @, (7*) and &, (z*).
These equations are valid for values of x, /¢ > 0.45 and for 7* > 0.1.
For values of t* < 0.1, 7, is greater than t* so that the limits of
integration in Eqgs. (37) are no longer valid. The usefulness of these
equations is that they accurately predict the value of x, for the
minimum Cy, for any value of 1 and for values of * > 0.1. They
also indicate that Cy,_ has a more complex functional dependence on
7* than does Cy, . Figure 7 presents the exact values of Cy,, and
Cy_, which were obtained by computing t, and specifying the limits
of integration for each case. The results of Eq. (38) for Cy,, are
shown as a dashed line for each case. It is seen that the results of
Eq. (38) are indistinguishable from the exact result for x,/c > 0.45
and become invalid as x,, / ¢ approaches 0.25. The result of Eq. (39) is
not shown in Fig. 7, although it can be shown to be accurate for the
same values of x, as Eq. (38). This figure shows that Cy,, and Cy,_
converge to the limit of t* = infinity, which represents the results of
steady airfoil theory. It also shows that as expected from steady
airfoil theory, Cy, is largest for x,/c < 0.25 and Cy,_ is largest for
x,/c > 0.25. The pitching axis for minimum Cy,, is found from
Eq. (38) to exactly equal 0.572, which is independent of t*. Figure 7
verifies that this minimum is located within the range of x, values in
which Eq. (38) is valid. From the Cy,_ plotin Fig. 7, itis deduced that
as 1 becomes nonzero and positive, the minimum C)y,, pitching axis
shifts toward the leading edge. Similarly, as n becomes negative, the
optimal axis shifts to the trailing edge.

The cases shown in Fig. 6 and discussed previously specified that
the initial «, and therefore the initial lift, was zero. The effect of an
initial lift will now be presented. From Eq. (39), it is seen that an
initial angle of attack ¢, only influences Cp through the last term,
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Fig. 7 Variation of Cy,, and Cy,_ with x,/c and 7*; the thin dashed lines in the Cy,, plot represent the result of Eq. (38).

which contains Q5. Dividing this equation by Aa? allows Cp to be
written as follows:

C 1
L= F{Qﬂf’l(f) + 0:0:(v) + 037+ Q4

Aa?
k
+[8(x) — 8(r — v)]Qs} + g (40)
where
%
Aa 41)

The value k represents the initial lift divided by the change in steady-
state lift. Recognizing the term k in Eq. (40) is useful because it
indicates that the normalized power coefficient (Cp/Aa?) is
dependent only on the ratio of ¢, and A, not on each term
independently. The presence of k significantly complicates the
problem of analytically determining Cy,, and Cy,_, although the
approximate method discussed previously can be applied to certain
values of k. The main effect of the initial lift is to vertically displace
the Cp curves, such as those shown in Fig. 6. This significantly
changes 7, and therefore alters the allocation of Cy, into Cy,, and
Cy_ components.

To gain some insight into the effect of k on Cy, , the limiting cases
of t* approaching zero and infinity will be examined. For t*
approaching zero, the region of integration for Cy,, is 0 < 7 < t*,
and the Cy,_ component comes completely from the Dirac delta
function at t*. From Eq. (40), the integration for Cy, with t*
approaching zero results in

Cy, _ 1 (1+n0s +7))Q5

+ O(1) (42)

1

o 5o el
which is independent of k. For n > —1, the Q5 term is dominant.
Thus, from Eq. (32), the pitching axis for minimum Cy, is at the half-
chord. For n = —1, only the bracketed term remains in Eq. (42).
Substituting Eqs. (29) and (31) into Eq. (42) and setting the
derivative with respect to x, equal to zero, the pitching axis for
minimum Cy, is found to be located at x,/c = 3/4.

For t* approaching infinity, the region of integration for Cy,, and
Cy_ depends upon k and x,,. This is seen by writing Eq. (40) in terms
of its lowest-order components for large values of t*. To determine
the lowest-order components, it is necessary to define t as

T=17" (43)
where 0 < T < 1. Substituting this into Eq. (40), the lowest-order
equation for Cp is written as follows:

Aol (44)

Cr —Q3( +k)+o(g”)

Note that as pointed out by Lomax [20], the asymptotic limits of ¢,
and ¢, obtained from Eqs. (15) and (16) are incorrect. Therefore, the
approximate Wagner function suggested by Garrick [26] was used
instead for obtaining Eq. (44). As expected, Eq. (44) represents the
steady thin airfoil theory result. Equation (44) shows that if k is less
than —1 or greater than zero, the lowest-order component of Cy, is
composed entirely of either Cy, ;. or Cy,_. For these values of k, Cy,
is written from Eqgs. (30) and (44) as follows:

Fx,, k) :%[(; + k)(l —4xa)] + o(
c

if F>0, Yo = F(x,, k)

n T

if F<0, Ya =y F(x,, k)|

C
Aa

(45)

For values of k between —1 and zero, 7, is determined by setting
Eq. (44) equal to zero. This value of 7 is then used as a limit of
integration for Cy, , which, from Egs. (30) and (44), results in

i I

i xa<4

CW w1 k2 1 b T*

—t=—|=+k+—=)(1-4 o O

A 2(2+ +2)( X,) + nw (4 xa)—|— (r )
1

if x,>—

1x,,_4

Cy,

1 b
Aaﬂz = —nk? (Z_x” ‘

T

)_”2(;

Table 1 presents the pitching axes for minimum Cy, obtained from
Eqs. (45) and (46), with the constraint that the axes remain within the
chord. These results are intuitive from the elementary nature of a
steady thin airfoil at an angle of attack.

The limiting cases of * discussed earlier allowed Cy, to be
obtained analytically, which allowed the optimal pitching axes to be
determined analytically. For the k > 0 cases, the approximate
approach presented in Eqgs. (36-39), accounting for the k term in
Eq. (40), is valid for a wide range of t* values. When this approach is
not valid, the integration for Cy, is performed numerically from
Egs. (24), (25), and (40). Using a combination of analytic and
numerical approaches, the minimum Cy, pitching axes were
obtained for n =0, 1, and —1. Figure 8 shows the variation of the

L )(1—4xa)+(9(

)

(46)

Table 1 Minimum Cy, pitching axes as * approaches infinity

k<—1 —1l<k<-1/2 —-1/2<k<0 k>0
=1 x,/c=1/4 x,/c=1/4 x,/c=1/4 x,/c=1/4
n=0 0<x,/c<l/4 x,/c=1/4 x,Je=1/4 1/d<x,/c<1
n=-1 x,/c=0 x,/c=0 x,/c=1 x,/c=1
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optimal pitching axis with t* for the n = 0 case for various k values.
As determined previously, the axes are shown to approach x,/c =
0.5 as t* approaches zero. It is seen in this figure that as k becomes
large and positive, the optimal axis is located at x, /¢ = 0.5 for most
7* values. This is a result of Cyy being composed of only the initial
impulse, which is smallest for the midchord axis. For negative k
values, the optimal axis moves toward the leading edge as t*
increases. Figure 9 shows the variation of the optimal pitching axis
with 7* for the n = 1 case and various k values. Itis interesting to note
that for this case, as was determined previously, the optimal axis at
both 7* equal to zero and infinity is independent of k. This explains
the increased similarity between the optimal axes curves for various k
values in Fig. 9 when compared with Fig. 8. For airfoils that must
complete a cycle, meaning they produce a change in lift (positive k)
and then later produce a negative change in lift to return to their initial
state (negative k), the similarity in the optimal axes for negative and
positive k values is advantageous. This is because a smaller
compromise must be made, assuming the pitching axis remains
fixed, when choosing the optimal pitching axis for the complete
motion. For the majority of negative and positive combinations of k,
the optimal axis for the combination is located between the two
independent optimal points for a given t*. Thus, Figs. 8 and 9 are
very general and applicable to many practical cases. Figure 10
presents the variation of the optimal pitching axis with t* for the
n = —1 case. It is seen that the difference between positive and
negative k values is very large compared with Figs. 8 and 9. The
result of increasing k in Fig. 10 is seen to be a decrease in the value of
©* at which the optimal axis is the same as those shown in Table 1 for
the t* equal to infinity case. The same conclusion can be stated from
Fig. 9. A similar result was reported by Yates [27] for the minimum
energy pitching axes of an oscillating flat plate intended to produce
thrust.

Fig. 8 The n =0 case for the variation of the minimum Cy, pitching
axes with 7* for various values of k.

Fig. 9 The n =1 case for the variation of the minimum Cy, pitching
axes with 7* for various values of k.

Fig. 10 The n = —1 case for the variation of the minimum Cy, pitching
axes with 7* for various values of k.

V. Application to Various Control
Surface Configurations

This section describes the affect of various control surface shapes
on the Cy,, required for a given change in lift. The first two cases to be
considered are shown in Fig. 11, which shows a conventional hinged
flap and a conformal control surface, consisting of a quadratic
segment defined to have zero slope at x,. The magnitude of the flap
deflection 8 is defined in both cases as the angle at the trailing edge.
The ramp input of B, defined in Eq. (11), will be used for this analysis.
From the shape functions v, which are shown for each case in
Fig. 11, the components of AC, in Eq. (13) may be determined
analytically from the equations in Sec. III. The resulting equations
are relatively complex, and it is therefore convenient to perform the
integrations required for the Q terms defined numerically in
Eqgs. (18-22). Note that in the previous case of the pitching flat plate,
the AC, produced by a Ax was independent of the pitching axis.
This meant that the Cy,, required for a given lift could be represented
by Cy,/ Ac?. For comparing various control surface configurations,
it is convenient to instead normalize Cp and Cy, by the AC?. From
Eq. (39), the normalized equation for Cp can then be written as

C 1
AG = IRz QD) + 0aa() + 0T + 04
k
+ 6 = 8(r = )03} + 705 7
where

:BO CL initial
=10 = —mtl 48
AR AC, “8)

Recall that the quantity AC; refers to the change in steady-state lift,
which from Eq. (3.7) of [25] is written as

AC, =Ky,AB (49)

Considering the conventional and conformal flap configurations, if &
is greater than zero, then Cp remains positive throughout the ramp
input of B. Therefore, Cyy, is obtained by integrating Eq. (47) from
7=0to t* and Cy,_ is obtained from Eq. (27). For small negative
values of k, Cp changes from positive to negative and therefore t,
must be determined. For these cases, the process described with
Eqgs. (36-39) may be used. For large negative k values, Cp remains
negative throughout the ramp input of 8. Therefore, Cy,_ is obtained
by integrating Eq. (47) from 7 =0 to t* and Cy,, is obtained from
Eq. 2D).

It is desired to compare the values of Cy, resulting from the
conventional and conformal flap configurations defined in Fig. 11.
The first case to be considered, shown in Fig. 12, compares the C,
required for a given ACy, x,,, and t* while varying k. It is seen that
the Cy,, required by the conformal flap is less than that required by
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Xp 0<x<ux,,
v oo p(x=0
\gﬁ x, <x<c,
Y(x)=—x+x,
a) Conventional flap
xp 0<x<x,,
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\ x,<x<c,
\[ﬂ _ 1 2 Xp xhz
< W(x)—[izm_])}x +[1—x,,}+2(x,,—l)
b) Conformal flap

Fig. 11 Camberline geometry for a conventional flap and conformal flap.
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Fig. 12 Comparison of the Cy, required for a conformal or

conventional flap.

the conventional flap for any k when n = 0. For the n = 1 case, there
is a small range of k values in which Cy, is slightly less for the
conventional flap. Overall though, the conformal flap requires less
Cy, than the conventional flap. The reason for the smaller Cy,, for the
conformal flap is that it requires less overall camberline deformation
for a given change in lift than does the conventional flap. Figure 13

illustrates this result, along with the corresponding load distribution
att = 1/2.Itis seen that the angle of deflection at the trailing edge of
the conformal flap is larger than that for the conventional flap for a
given change in lift, but the overall Az of the camberline is less for the
conformal flap. The load distribution for the conventional flap is
centered more toward the hinge line than that for the conformal flap,
which is favorable for the conventional flap. Nevertheless, the larger
Az overshadows the favorable load distribution for the conventional
flap. It should be mentioned that the shape of the load distributions
shown in Fig. 13 apply only at T = 1/2. As shown in Eq. (13), the
load distribution does not simply scale linearly with the ramp input of
B. Figure 14 shows that Cy, varies with 7* and x,, for the conformal
and conventional flap. It is seen that the conformal flap requires less
Cy, forevery case. Itis also apparent that the benefit of the conformal
flap becomes larger as 7* decreases. Hence, the conformal flap is
ideal in situations in which rapid changes in lift are required. The
values of Cy, in the limit as T* goes to infinity are shown in Fig. 14.
These values, which can be obtained from steady thin airfoil theory,
show that Cy, is 18% less for the conformal flap in the steady limit.
The considerable difference between the steady and unsteady values
in Fig. 14 indicates the importance of including the unsteady
aerodynamic terms in this analysis. It should be mentioned that the
values of Cy, for a given change in quarter-chord pitching moment
C), produce results similar to those in Fig. 14. In particular, the value
of Cy, / C2, decreases continuously as x,, varies from midchord to the
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Conformal Flap 0005 ONC e Conformal Flap
08F N\ emmmm e N
"""""""""""""" -0.01 \'\‘
S ~ .
Q06 &) 0015 .
3 30 N
~ “ ~ N
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075 0.8 0.85 09 095 1 003375 0.8 0.85 09 095 1
x/c x/c

Fig. 13 Load distribution over the flap and the corresponding shape of the flap deflections.
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Fig. 14  Effect of flap size and 7* on the Cy, required for the conformal or conventional flap.
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Fig. 15

trailing edge. This is true even though the flap deflection required to
produce a pitching moment has a minimum at x, /¢ = 0.75 for the
conventional case.

The next cases to be considered are the variable camber
configurations shown in Fig. 15, which are defined as NACA four-
digit camberlines with time-dependent magnitudes of maximum
camber. Configuration A is defined so that the leading and trailing
edges remain on the x axis as the camber changes. Configuration B, is
defined so that the location of maximum camber x, remains on the x
axis as the camber changes. Because of the similar camberline
shapes, these two configurations produce the same aerodynamic
forces in steady thin airfoil theory. But the addition of the
aerodynamic damping component, due to the motion of the
camberline during shape change, makes the unsteady thin airfoil
results different between the two cases. In considering the actuator
energy for each case, it is assumed that each configuration is actuated
with a single actuator. This implies that some type of linkage system
is used to produce the desired camberline shape. Also, as was done
throughout this paper, only the aerodynamic forces are considered
for the actuator energy. It is recognized that this is a big assumption
for these variable camber configurations, but nonetheless, we feel
that the present analysis provides significant insight into the
actuation properties of a variable camber airfoil.

Camberline geometry for a variable camber airfoil with Configurations A and B.

The dependence of Cy, on k and x,,/c is shown in Fig. 16 for both
configurations and n = 0. It is seen that configuration B requires
significant Cy, forpositive k cases, whereas configuration A requires
very little for these cases. This result is explained by recognizing that
the camberline motion for configuration B is downward for a positive
change in lift, which must therefore move against the upward-acting
lift forces. On the other hand, the camberline motion for
configuration A is upward and is therefore not resisted by the
aerodynamic forces. For negative k values, the situation reverses and
this configuration requires significant Cy, . Figure 16 shows that
configuration B requires less Cy, for a given positive k than
configuration A requires for a negative k of the same magnitude. This
means that if the airfoil is intended to produce an equal number of
positive changes in lift as negative changes in lift, then
configuration B is favorable from an energy standpoint. The second
plot in Fig. 16 shows that this conclusion is true for any location of
maximum camber x;. It is also seen that as x;, moves closer to the
leading edge, configuration B becomes even more favorable. The
load distribution and corresponding camberline shape at T = % are
shown in Fig. 17. This figure illustrates the point made previously
that the camberline motion for configuration B is resisted by the
aerodynamic forces for k greater than or equal to zero. Note that the
difference between the load distributions shown in this figure come
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Fig. 17 Example of the unsteady load distribution and corresponding camberline shape for configuration A and B.
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from the K, ; and A, terms in Eq. (13). This figure clearly shows
why configuration B requires less Cy, (when considering the entire
range of k values) than configuration A. The first reason is that
configuration B simply requires less overall camberline deflection
than does configuration A. The second reason is that for
configuration A, the largest camberline deflections are toward the
center of the camberline, whereas for configuration B, they are at the
leading and trailing edges. Combining this fact with the shape of the
load distribution clearly shows the advantage of configuration B.

VII. Conclusions

The work required to overcome the aerodynamic forces to produce
a change in lift through camberline deformation was shown to
depend significantly on the initial lift of the airfoil. This conclusion
arises because there is infinite energy in a lifting two-dimensional
flow. The power required for a ramp input of arbitrary camberline
deformation was shown to depend on five terms, defined as
01, 0, ..., 0s, which depend on the results of unsteady thin airfoil
theory. The necessity of using unsteady thin airfoil theory for the
study was illustrated. The pitching axis required for a flat plate to
produce a change in lift with minimum energy input to the actuator
was shown to depend on the energy required by the actuator to
produce negative work. Assuming that there is no energy cost
associated with negative work, the minimum energy pitching axis for
an airfoil with zero initial lift is located at x/c equal to 0.572 for a
ramp input. For various actuator models, the minimum energy
pitching axes were obtained and shown to depend on the rate of the
ramp input t*. A conformal flap was shown to require significantly
less energy than a conventional flap to produce a change in lift. This
conclusion was shown to be independent of the initial lift, rate of the
flap deflection, and flap size. A downward-deflecting variable
camber configuration (configuration B) was shown to require less
energy than an upward-deflecting configuration (configuration A) if
both positive and negative changes in lift are considered. Among the
control devices investigated in this paper, the conformal trailing-
edge flap requires the least energy to overcome the aerodynamic
forces for a given change in lift. The present analysis shows that the
unsteady aerodynamic influence is important only for 7* values less
than five. For t* values larger than this, the present analysis reduces
to the steady airfoil results of past studies.
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